For solid bodies, mass and radius are logarithmically coupled; they are not independent values. You can determine the scaling exponent for any solid body taking x = log(r)/log(m). In our solar system, this yields values of x between 0.24 and 0.3.
Code:
Large icy moons 0.239 - 0.242 0.240 Callisto, Ganymede, Titan
Superterrestrials 0.265 - 0.275 0.270
Plutinos, KBOs 0.271 - 0.285 0.280 Triton, Pluto, Charon
Icy moonlets 0.265 - 0.290 0.278 Dione, Rhea, Mimas, Iapetus
Large Terrestrials 0.257 - 0.283 0.281 Mars, Earth, Venus
Small Terrestrials 0.292 - 0.298 0.295 Io, Europa, Moon
Asteroids 0.292 - 0.324 0.309 Pallas, Juno
Mercury 0.300 - 0.350 0.332
Mercury is the outlier here because of its over-sized core.
I produced the following table using this principle. It shows the various formulae used for each column. Units are earth masses, earth radii, earth gravity where Earth = 1. The first column is the Traveller size digit, and the second is earth radii based on Size/7.9175, because Earth is not precisely Size 8.
Calculated mass m, density d, gravity g of silicate or carbon planets with FeNi or FeS cores and 32.5% core mass fraction.
Note: Icy planets with silicate cores have 33% to 66% of the calculated mass and gravity.
Code:
r³×2^(r-1) 2^(r-1) r×2^(r-1)
S/7.9175 r³×2^r/2 2^r/2 r×2^r/2 10/(m/r) HZ
Size S Radius r Mass m Density d Gravity g MMWR Atmosphere
------------------------------------------------------------------------
0.2 0.0253 0.0000 0.5088 0.013 0 semi-spherical
0.3 0.0379 0.0000 0.5133 0.019 0 smallest spherical bodies
0.4 0.0505 0.0001 0.5178 0.026 0
0.5 0.0632 0.0001 0.5224 0.033 0
0.6 0.0758 0.0002 0.5270 0.040 0
0.7 0.0884 0.0004 0.5316 0.047 0
0.8 0.1010 0.0006 0.5363 0.054 0
0.9 0.1137 0.0008 0.5410 0.062 0
1.0 0.1263 0.0011 0.5457 0.069 0
1.5 0.1895 0.0039 0.5702 0.108 0
2.0 0.2526 0.0096 0.5957 0.150 0
2.5 0.3158 0.0196 0.6223 0.197 159.6 1-
3.0 0.3789 0.0354 0.6502 0.246 106.1 1- retains sulfur hexafluoride
3.5 0.4421 0.0587 0.6793 0.300 74.6 1
4.0 0.5052 0.0915 0.7097 0.359 54.7 1, B+ retains sulfur dioxide
4.5 0.5684 0.1361 0.7414 0.421 41.3 1, A+ retains carbon dioxide, argon, hydrogen sulfide
5.0 0.6315 0.1951 0.7746 0.489 32.0 2+ minimum habitable mass, retains oxygen, acetylene, ethylene
5.5 0.6947 0.2713 0.8093 0.562 25.4 2+ retains nitrogen, ethane
6.0 0.7578 0.3679 0.8455 0.641 20.4 2+
6.5 0.8210 0.4887 0.8833 0.725 16.6 2+
7.0 0.8841 0.6377 0.9228 0.816 13.7 2+ retains methane, ammonia
7.5 0.9473 0.8195 0.9641 0.913 11.4 2+
8.0 1.0104 1.0391 1.0072 1.018 9.6 4+
8.5 1.0736 1.3021 1.0523 1.130 8.2 4+
9.0 1.1367 1.6148 1.0994 1.250 7.0 6+
A 9.5 1.1999 1.9842 1.1486 1.378 6.0 6+
10.0 1.2630 2.4178 1.2000 1.516 5.2 8+ superterrestrial planet
B 10.5 1.3262 2.9241 1.2537 1.663 4.5 8+
11.0 1.3893 3.5125 1.3098 1.820 3.9 8+ retains helium
C 11.5 1.4525 4.1931 1.3684 1.988 3.4 8+
12.0 1.5156 4.9774 1.4296 2.167 3.0 8+
D 12.5 1.5788 5.8775 1.4936 2.358 2.7 B+ maximum terrestrial planet size
13.0 1.6419 6.9073 1.5604 2.562 2.4 B+ gas giant core, chthonian planet