The ability to detect is not the same as automatic detection. Nor is having the data and having it in usable form the same thing. Inside our own system we are still discovering near earth asteroids, and just recently an amatuer astronomer (from Austrailia I believe?) discovered a comet that wasn't picked up by the professionals - who certainly have better detection capability. The shear number of objects moving on various orbits would make separating a ship from the background clutter at distances over an AU pretty difficult at least part of the time.
I'm sorry - I'm talking about the detection of
spacecraft, whose life support power alone would emit enough radiation to be seen across interplanetary distances:
From
Atomic Rockets:
"The maximum range a ship running silent with engines shut down can be detected with current technology is:
Rd = 13.4 * sqrt(A) * T2
where:
Rd = detection range (km)
A = spacecraft projected area (m2 )
T = surface temperature (Kelvin, room temperature is about 285-290 K)
If the ship is a convex shape, its projected area will be roughly one quarter of its surface area.
Example: A Russian Oscar submarine is a cylinder 154 meters long and has a beam of 18 meters, which would be a good ballpark estimate of the size of an interplanetary warship. If it was nose on to you the surface area would be 250 square meters. If it was broadside the surface area would be approximately 2770. So on average the projected area would be 1510 square meters ([250 + 2770] / 2).
If the Oscar's crew was shivering at the freezing point, the maximum detection range of the frigid submarine would be 13.4 * sqrt(1510) * 2732 = 38,800,000 kilometers, about one hundred times the distance between the Earth and the Moon, or about 129 light-seconds. If the crew had a more comfortable room temperature, the Oscar could be seen from even farther away.
To keep the lifesystem in the spacecraft at levels where the crew can live, you probably want it above 273 K (where water freezes), and preferably at 285-290 K (room temperature). Glancing at the above equation it is evident that the lower the spacecraft's temperature, the harder it is to detect. "Aha!" you say, "why not refrigerate the ship and radiate the heat from the side facing away from the enemy?"
Ken Burnside explains why not. To actively refrigerate, you need power. So you have to fire up the nuclear reactor. Suddenly you have a hot spot on your ship that is about 800 K, minimum, so you now have even more waste heat to dump.
This means a larger radiator surface to dump all the heat, which means more mass. Much more mass. It will be either a whopping two to three times the mass of your reactor or it will be so flimsy it will snap the moment you engage the thrusters. It is a bigger target, and now you have to start worrying about a hostile ship noticing that you occluded a star."
And receiving and processing the data? Again from Atomic Rockets (one of my favourite sites, if you hadn't already guessed)...
"Ken Burnside said:
A full spherical sky search is 41,000 square degrees. A wide angle lens will cover about 100 square degrees (a typical SLR personal camera is about 1 square degree); you'll want overlap, so call it 480 exposures for a full sky search, with each exposure taking about 350 megapixels.
Estimated exposure time is about 30 seconds per 100 square degrees of sky looking for a magnitude 12 object (which is roughly what the drive I spec'd out earlier would be). So, 480 / 2 is 240 minutes, or about 4 HOURS for a complete sky survey. This will require signal processing of about 150 gigapizels per two hours, and take a terabyte of storage per sweep.
That sounds like a lot, but...
Assuming 1280x1024 resolution, playing an MMO at 60 frames per second...78,643,200 = 78 megapixels per second. Multiply by 14400 seconds for 4 hours, and you're in the realm of 1 terapixel per sky sweep Now, digital image comparison is in some ways harder, some ways easier than a 3-D gaming environment. We'll say it's about 8x as difficult - that means playing World of Warcraft on a gaming system for four hours is about comparable to 75 gigapixels of full sky search. So not quite current hardware, but probably a computer generation (2 years) away. Making it radiation hardened to work in space, and built to government procurement specs, maybe 8-10 years away.
I can buy terabyte hard drive arrays now.
I can reduce scan time by adding more sensors, but my choke point becomes data processing. On the other hand, it's not unreasonable to assume that the data processing equipment will get significantly better at about the same rate that gaming PCs get significantly better.
Now, this system has limits - it'll have trouble picking up a target within about 2 degrees of the sun without an occlusion filter, and even with one, it'll take extra time for those exposures.
It won't positively identify a target - it'll just give brightness and temperature and the fact that it's something radiating like a star that moves relative to the background.
On the other hand, at the thrusts given above, it'll take somewhere around 2 days of thrust to generate the delta v to move from Earth to Mars, and the ship will be in transit for about 1-4 months depending on planetary positions."