Was crunching some numbers last night... want to re-crunch them here for sharing.
Pulling some data from wikipedia (because it's an easy source)...
The outer Oort (henceforth just Oort) is a trillion objects at least 1 km in diameter; and a billion at 20km.
pretty safe.
And the Hill Cloud
20000-2000 = 18000 AU diameter donut, or 9000 AU tube radius centered on 11000 AU orbit.
10x the objects.
V=(πr²)(2πR)
but note that the Hills cloud being in the way is only P=(22*2)/(2*11π)... roughly, P(hills in way)=0.6.
P(Oort Safe) 0.99999999996003200000
P(Hills Safe if in way) 0.99999935892301400000
P(Hills stops if in way) 0.00000064107698583005
P(hills in way) 0.636619772367581
P(Hills stops) 0.00000040812228478922
P(Hills net safe) 0.999999591877715
P shell 0.999999591837747
2nd system 0.999999183675661
So, the odds of an oort or hills stop on jump is roughly 8 in 10,000,000
And, just for fun... the odds of stop with a larger radius for shadowing?
take the ratio and square it, then multiply that 8 in 10million
so for 1000 diameters...8 in 100,000
for 10000 diameters, 8 in 1,000
for 100,000 diameters, 8%
Pulling some data from wikipedia (because it's an easy source)...
The region can be subdivided into a spherical outer Oort cloud of 20,000–50,000 AU (0.32–0.79 ly), and a doughnut-shaped inner Oort cloud [Hill's Cloud] of 2,000–20,000 AU (0.03–0.32 ly).
The outer Oort cloud may have trillions of objects larger than 1 km (0.62 mi),[3] and billions with absolute magnitudes[14] brighter than 11 (corresponding to approximately 20-kilometre (12 mi) diameter), with neighboring objects tens of millions of kilometres apart.
The outer Oort (henceforth just Oort) is a trillion objects at least 1 km in diameter; and a billion at 20km.
Oort | radius | Vol |
Ri | 20,000. | 33,510,321,638,291.1 |
Ro | 50,000. | 523,598,775,598,299. |
Shell | 490,088,453,960,008. | |
Small objects | ||
NumObj | 1,000,000,000,000. | |
Density (obj/au³ | 0.00204044798835763 | =NumObj/VolShell |
radius in AU | 0.00000066889632107023 | =100÷1495 |
area in AU² | 0.00000000000044742229 | =radius² |
Area * density | 0.00000000000000091294 | |
P(avoid) per AU³ | 0.999999999999999 | =1-area*density |
crossing distance | 30,000. | =Ro - Ri |
P(avoid) per shell | 0.999999999973355 | =p(avoid per AU)^CrossingDist(in au) |
20 km objects | ||
NumObj | 1,000,000,000. | |
Density (obj/au³ | 0.00000204044798835763 | =NumObj/VolShell |
radius in AU | 0.0000133779264214047 | =2000÷1495 |
area in AU² | 0.00000000017896891534 | =radius² |
Area * density | 0.00000000000000036518 | |
P(avoid) per AU³ | 1. | =1-area*density |
crossing distance | 30,000. | =Ro - Ri |
P(avoid) per shell | 0.999999999990008 | =p(avoid per AU)^CrossingDist(in au) |
combined A*D | 0.00000000000000127812 | =small + large |
P(avoid) per AU³ | 0.999999999999999 | =1-combined |
P(avoid) per shell | 0.999999999960032 | =p(avoid per AU)^CrossingDist(in au) |
pretty safe.
And the Hill Cloud
20000-2000 = 18000 AU diameter donut, or 9000 AU tube radius centered on 11000 AU orbit.
10x the objects.
V=(πr²)(2πR)
Hill | radius | Vol |
Ri | 2,000. | |
Ro | 20,000. | |
Rr | 9,000. | |
RR | 11,000. | |
Shell Vol | =(πr²)(2πRR) | 17,587,635,042,741.2 |
Small objects | ||
NumObj | 1,000,000,000,000,000. | |
Density (obj/au³ | 56.8581277454196 | =NumObj/VolShell |
radius in AU | 0.00000066889632107023 | =100÷1495 |
area in AU² | 0.00000000000044742229 | =radius² |
Area * density | 0.00000000002543959363 | |
P(avoid) per AU³ | 0.99999999997456 | =1-area*density |
crossing distance | 18,000. | =Ro - Ri |
P(avoid) per shell | 0.999999542088396 | =p(avoid per AU)^CrossingDist(in au) |
20 km objects | ||
NumObj | 1,000,000,000,000. | |
Density (obj/au³ | 0.0568581277454196 | =NumObj/VolShell |
radius in AU | 0.0000133779264214047 | =2000÷1495 |
area in AU² | 0.00000000017896891534 | =radius² |
Area * density | 0.00000000001017583745 | |
P(avoid) per AU³ | 0.999999999989824 | =1-area*density |
crossing distance | 18,000. | =Ro - Ri |
P(avoid) per shell | 0.999999816834534 | =p(avoid per AU)^CrossingDist(in au) |
combined A*D | 0.00000000003561543108 | =small + large |
P(avoid) per AU³ | 0.999999999964385 | =1-combined |
P(avoid) per shell | 0.999999358923014 | =p(avoid per AU)^CrossingDist(in au) |
but note that the Hills cloud being in the way is only P=(22*2)/(2*11π)... roughly, P(hills in way)=0.6.
P(Oort Safe) 0.99999999996003200000
P(Hills Safe if in way) 0.99999935892301400000
P(Hills stops if in way) 0.00000064107698583005
P(hills in way) 0.636619772367581
P(Hills stops) 0.00000040812228478922
P(Hills net safe) 0.999999591877715
P shell 0.999999591837747
2nd system 0.999999183675661
So, the odds of an oort or hills stop on jump is roughly 8 in 10,000,000
And, just for fun... the odds of stop with a larger radius for shadowing?
take the ratio and square it, then multiply that 8 in 10million
so for 1000 diameters...8 in 100,000
for 10000 diameters, 8 in 1,000
for 100,000 diameters, 8%